

Four Year Outcomes, Efficacy & Safety of Foam Sclerotherapy for Cysts in ADPKD & ADPLD

Seif Bugazia MD1, Newton Neidert MD2 Emily Bendel MD2, Laureano J. Rangel3, Adriana Gregory3, Vicente E. Torres MD PhD1, Marie C. Hogan MD PhD1 ¹Division of Nephrology and Hypertension, ²Department of Radiology, Mayo Clinic, Rochester, MN

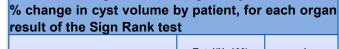
TH-PO395 — 2022

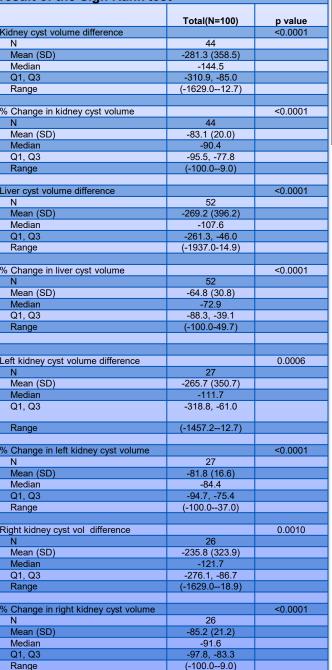
BACKGROUND

- Polycystic kidney disease (ADPKD) & Autosomal Dominant Polycystic Liver Disease (ADPKD) are inherited disorders inducing cysts that progressively expand in kidney/ liver & multiply, causing mass symptoms & in ADPKD lead to renal
- There is currently no effective treatment that can reduce both TKV & TLV in ADPKD & ADPLD patients.
- In 2017 we migrated from alcohol to sotradecol foam sclerotherapy (SFS) in our practice because of perceived improved efficacy in reducing total organ volume & relieving pressure symptoms and pain.

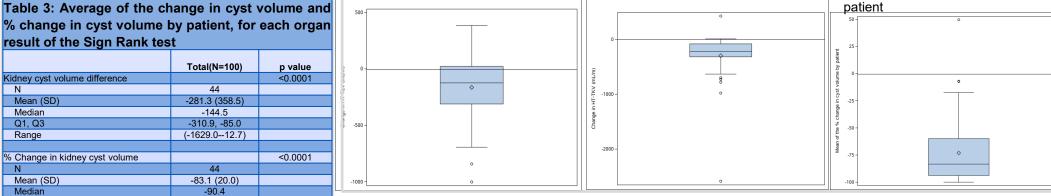
METHODS

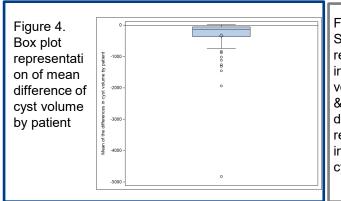
- Data analyzed from 1/1/2017-12/31/2021 in those who completed at least one SFS procedure for cysts >5 cm diameter.
- Segmentation used to determine TKV/TLV & cyst volumes before & after SFS (in cases with coronal MRI/axial CT) using artificial intelligence software.
- Changes in TKV/TLV, kidney & liver function, QOL (LASA, PLD-Q, SF12) were evaluated.
- Impact on GFR decline, changes in TKV/TLV & adverse events (AEs) following SFS were assessed.
- TKV/TLV (absolute & % annual change wrt baseline, IQR [Q1,Q3], changes in PLD-Q scores were assessed pre/post, multivariable logistic regression examined GFR trajectories pre/post SFS.

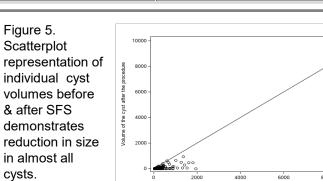

RESULTS


	Total
	(N=102)
Age at procedure	
N	102
Mean (SD)	58.1 (11.8)
Median	57.0
Q1, Q3	48.9, 67.6
Range	(30.5-82.6)
Gender	
Female	75 (73.5%)
Male	27 (26.5%)
Race	
White	96 (94.1%)
Black	2 (2.0%)
Asian	3 (2.9%)
Latin	1 (1.0%)
Diagnosis	
ADPKD	72 (70.6%)
ADPLD	8 (7.8%)
PKD spectrum	15 (14.7%)
Solitary cyst	7 (6.9%)
Genetic mutation	
PKD1T	15 (14.7%)
PKD1NT	7 (6.9%)
PKD2T	10 (9.8%)
PKD2NT	4 (3.9%)
Other	8 (7.8%)
Not known	58 (56.9%)

© 2022 Mayo Foundation for Medical Educat


770)	N	53
%)	Mean (SD)	-271.6 (472.7
7%)	Median	-205.0
%)	Q1, Q3	-513.0, 39.0
(0)	Range	(-1734.0-653.0
	% Change in TLV	
7%)	N	53
%)	Mean (SD)	-11.0 (20.9)
	Median	-7.2
%)	Q1, Q3	-15.2, 1.6
%)	Range	(-109.8-12.7)
%) 9%)	Change in HT-TLV (mL/m)	
,	N	53
	Mean (SD)	-163.9 (281.3
n and	Res Median	-124.0
	Q1, Q3	-311.1, 22.2
	Range	(-1001.7-385.0


RESULTS



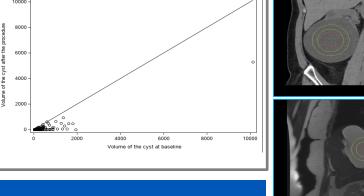
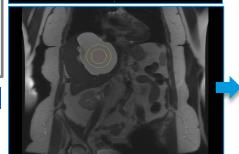
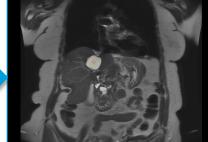
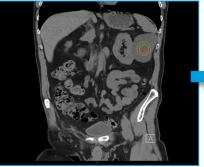


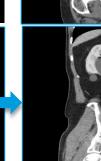
Figure 2. Box plot representation of Figure 1. Box plot representation of Figure 3. Box plot representation of change in Ht-TLV (mL/m) percent difference of cyst volume by change in Ht-TKV (mL/m)


Pre- procedure


Post procedure

Cross- sectional imaging examples pre- and postprocedure. Cysts are circled.





- Post procedural pain. n= 20 (20%)
- Five hospitalized (5%); cholangitis (n=1); hematuria associated with AV fistula R kidney (n=1) needing renal angiogram & embolization; hemoperitoneum (n=1) -resolved. Pain & nausea (n=1). Abdo pain
- Other complications; (n=6; 6%). SOB (n=1; SOB) ER Visit; procedural pain (n=1); abortive procedure due to Sotradecol shortage Urine leak (n=1;1%) UTI (n=1; 1%) Contrast leak, (n=2; 2%).

CONCLUSIONS

- In those with pre & post SFS imaging, TKV (mean \pm SD) decreased by 25.8 \pm 21.5% & TLV by 11±20.9% with improvement in QOL-related reductions in mass effects. There was a 73±27.8% reduction in individual targeted cyst size; individual kidney cyst volumes decreased 83 ±20% and liver cyst volumes decreased $64.8 \pm 30.8\%$ While SFS did not augment effects on TKV and TLV in individuals on Tolvaptan and OctLAR, SFS was complementary with these medical therapies.
- There was no detectable benefit on eGFR decline in those who had SFS of kidney cysts in the
- We demonstrate clinical success with SFS as a relatively safe procedure (5% SAE rate) providing durable cyst volume reduction, improved pain and mass related symptoms and enhancing QOL.
- SFS can be performed as an outpatient day procedure with moderate sedation by Interventional Radiologists, replacing alcohol sclerotherapy & reduces the need for laparoscopic cyst fenestration for management of symptomatic liver & kidney cysts.