Characterization of P2rX7 knockout in PCK (Polycystic Kidney) rats

Sergey N. Arkhipov¹, D'Anna Potter¹, Aron Geurts² and Tengis S. Pavlov¹

¹Henry Ford Hospital, Detroit, MI 48202 and ²Medical College of Wisconsin, Milwaukee, WI 53226

- INTRODUCTIONAccumulating evidence suggests that the autocrine and paracrine effects of Adenosine-3- phosphate
(ATP) could be detrimental for the progression of polycystic kidney diseases (PKD). P2X7 targeting in
cell cultures and zebrafish was shown to decrease cyst progression.METHODSIn this project, CRISPR/Cas9 approach was employed to knockout P2X7 receptor in the PCK rat strain,
a model of autosomal recessive PKD (ARPKD), to study involvement of P2X7 in PKD progression in
mammals. Male PCK.P2rX7^{+/+} and PCK.P2rX7^{-/-} littermates were studied with H&E histomorhological
evaluation of cyst progression, in-vivo renal function was evaluated with inulin clearance based
glomerular filtration rate and measurements of 24hrs proteinuria. Because P2X7 receptors were
found to regulate vascular tone we investigate possible effect of the knockout on blood pressure with
implantable radiotelemetry. To evaluate epithelial electrolyte transport in cysts we applied patch-
clamp electrophysiology to measure ENaC activity freshly isolated non-dilated ducts, early stage cysts
and mature large cysts.
- **RESULTS**PCK. P2rX7+/+ and PCK. P2rX7-/- animals exhibited moderate hypertension (blood pressure did
not differ as registered with continuous DSI telemetry). Total P2X7 knockout causes exacerbated
cystogenesis especially in cortex of adult rats compared to wild-type littermates. We observe
insignificant proteinuria of in both groups (at 13 weeks) but with aging (at 24 weeks), it reached
89±13 and 157±19 mg/day/100g in wild-type and knockout animals, respectively. Glomerular
filtration rate was also lower in the P2rx7-/- group (0.88±0.06 vs 1.22±0.11 ml/min/100g body
weight) in young rats, however, with aging GFR significantly decreased in both groups and did not
differ. We found that developing cysts exhibit increased ENaC activity whereas mature cysts had
impaired channel activity (NPo= 0.78±0.1; 1.37±0.2 and 0.39±0.16). In all three tissue types P2X7
knockout increased ENaC activity (NPo=1.36±0.17; 2.3±0.36; 0.86±0.05), as expected.
- CONCLUSION P2X7 receptor contributes to protection against ARPKD development in PCK rats via limiting ENaC activity. Acknowledgement: K99/R00 HL116603, Baltimore PKD Center P&F Grant and MCW Gene Editing Rat Resource Center